Helicity of the W Boson in Lepton+Jets tt Events

Florencia Canelli

University of Rochester / UCLA

- Introduction
- The new approach for measuring top quark properties
- Monte Carlo tests with the new approach
- F₀ measurement using Run I D∅ data
- Systematic uncertainties
- Conclusions

Event Topology and Selection Criteria

• DØ Statistics Run I (125 pb⁻¹)

- In proton antiprotons collisions @ \sqrt{s} =1.8TeV top quarks are primarily produced in pairs
- 90% qqbar ->ttbar, 10% gg-.ttbar
- Each top quark decays weakly: BR(t⇒Wb) @ 100%
- There are 3 main experimental ttbar signatures depending on the decay of the W bosons:
 - Dilepton BR(ee+ $\mu\mu$ +e μ) ~ 5%
 - All-Hadronic BR(quarks) ~ 44%
 - Lepton +Jets BR(e+jets, μ+quarks) ~ 30%

• Lepton+Jets

- **Signal:** 1 high-P_T lepton, 4 jets, large missing-E_T
- **Background:** W with associated production of jets

- Standard Selection:

- Lepton: E_T >20GeV, $|\eta^e| < 2$, $|\eta^{\mu}| < 1.7$
- **Jets:** ≥ 4 , $E_{\tau} > 15 \text{ GeV}$, $|\eta| < 2$
- Missing E_T > 20 GeV
- " E_T^W " > 60 GeV; $|\eta_W| < 2$

91 events Ref. PRD 58 (1998), 052001 After χ^2 cut 40% signal

- Additional cuts for this analysis:

- 4 Jets only (Leading Order Matrix Element)
 - 71 events
- Background probability (to improve purity)

22 events => 12 signal + 10 background

Helicity of the W in ttbar events

Top Standard Model weak decay ->
 V-A coupling as it is for all the other fermions

W_ Left-Handed fraction F_

 W_0 Longitudinal fraction F_0

Suppressed by the V-A coupling

W₊ Right-Handed fraction F₊

$$w(\cos \varphi_{l\bar{b}}) = F_{-} \cdot \frac{3}{8} (1 - \cos \varphi_{l\bar{b}})^{2} + F_{0} \cdot \frac{3}{8} (1 - \cos^{2} \varphi_{l\bar{b}}) + F_{+} \cdot \frac{3}{8} (1 + \cos \varphi_{l\bar{b}})^{2}$$

In SM (with $m_b=0$, $M_{top}=175$ GeV and $m_W=80.4$ GeV),

$$F_{-} = \frac{2\frac{m_W^2}{M_{top}^2}}{1 + 2\frac{m_W^2}{M_{top}^2}} \approx 0.30$$

We want to extract

$$F_0 = \frac{1}{1 + 2\frac{m_W^2}{M_{top}^2}} \approx 0.70$$

 $F_{+}=0$

The General Method

• We want to find the value of a parameter α

In our case $\alpha = F_0$

• The best estimate of a parameter (α) is achieved comparing the events with the probability from the theory with the data. This is done by maximizing a likelihood:

$$L(\alpha) = e^{-N\int \overline{p}(x;\alpha)dx} \prod_{i=1}^{N} \overline{P}(x_i;\alpha)$$

where x is a set of measured variables

Probability. Sum over all the possible parton variables y leading to the observed set of variables x

 $d^n\sigma$ is the differential cross section. ME: F_0 in leptonic and hadronic decays

W(y,x) is the probability that a parton level set of variables y will be measured as a set of variables x

$$\overline{P}(x;\alpha) = \frac{1}{\sigma} \int d^n \sigma(y;\alpha) \frac{dq_1 dq_2 f(q_1) f(q_2) W(x,y)}{\bullet}$$

f(q) is the probability distribution than a parton will have a momentum q

Detector effects

$$\overline{P}_{measured}(x;\alpha) = Acc(x)\overline{P}_{production}(x;\alpha)$$

where Acc(x) include all conditions for accepting or rejecting an event

• Background events with weights c_i $\overline{P}(x; c_1, ..., c_K, \alpha) = \sum_{i=1}^K c_i \overline{P}_i(x; \alpha)$

Transfer Function W(x,y)

• W(x,y) probability of measuring x when y was produced (x jet variables, y parton variables):

Energy of electrons is considered well measured

$$W(x,y) = \delta^{3}(p_{e}^{y} - p_{e}^{x}) \prod_{j=1}^{4} W_{jet}(E_{j}^{y}, E_{j}^{x}) \prod_{i=1}^{4} \delta^{2}(\Omega_{i}^{y} - \Omega_{i}^{x})$$

And due to the excellent granularity of the $D\varnothing$ calorimeter, angles are also considered well measured

- $W_{jet}(x,y)$ model the smearing in jet energies from effects of radiation, hadronization, measurement resolution, and jet reconstruction algorithm
 - o Use 2 gaussians, one to account for the peak and the other to fit the asymmetric tails
 - o Correcting on average, and considering these distributions to be Gaussian can underestimate the jet energy
 - o b and light quarks parameterizations

Probability for Signal Events

- 2(in) + 18(final) = **20** degrees of freedom
- $3(e)+8(\Omega 1...\Omega 4)+3(P_{in}=P_{final})+1(E_{in}=E_{final})=15$ constraints
- 20 15 = **5** integrals => we choose M_{top} , m_W and jet energy of one of the jets because $|M|^2$ is almost negligible, except near the four peaks of the Breit-Wigners within $|M|^2$
- All the neutrino all possible solutions are considered
- Sum over 12 combinations of jets

$$P_{t\bar{t}}(x,\alpha) = \frac{1}{12\sigma_{t\bar{t}}} \int d\rho_1 dm_1^2 dM_1^2 dM_2^2 dM_2^2 \sum_{comb,v} |M_{t\bar{t}}(\alpha)|^2 \frac{f(q_1)f(q_2)}{|q_1||q_2|} \phi_6 W_{jet}(x,y)$$

 $\begin{array}{lll} \rho_1 & \text{momentum of one of the jets} \\ m_1, m_2 & \text{top mass in the event} \\ M_1, M_2 & \textit{W} \text{ mass in the event} \\ f(q_1), f(q_2) \text{ parton distribution function (CTEQ4) for incident partons} \\ q_1, q_2 & \text{initial parton momentum} \\ \phi_6 & \text{six particle phase space} \\ W_{\text{jet}}(x,y) \text{ probability of measuring } x \text{ when y was produced in the collision} \\ |M_{\text{ttbar}}|^2 & \text{ttbar->lepton_jets matrix element (only qqbar)} \end{array}$

Approximations in the probabilities definitions (things to do better with more statistics)

- Only ttbar from qqbar production: it does not include 10% of ttbar events that are produced by gluon fusion
- Only W+jets background: that is ~85% only of the background
 - ❖ The background probability is defined only in terms of the main background (W+jets, 85%) which proves to be an adequate representation for multijet background
 - ❖ The background probability for each event is calculated using VECBOS subroutines for W+jets
 - Similar procedure than for ttbar events
- Leading-Order ttbar matrix element: no extra jets, constrains our sample to have only 4 jets

$$P_0(x; c_1, c_2, \alpha) = c_1 P_{tthar}(x; \alpha) + c_2 P_{W+iets}(x)$$

After these approximations, the likelihood function used is

$$-\ln L(\alpha) = -\sum_{i=1}^{N} \ln \left[c_1 P_{ttbar}(x_i; \alpha) + c_2 P_{W+jets}(x_i) \right] + N \int A(x) \left[c_1 P_{ttbar}(x; \alpha) + c_2 P_{W+jets}(x) \right] dx$$

The values of c_1 and c_2 are optimized, and the likelihood is normalized automatically at each value of α

Calculated in two different ways using Monte Carlo method of integration

Extra Selection in P_{bkg}

• In order to increase the purity of signal another selection is applied on P_{bkg} , with efficiencies:

$$\epsilon_{\text{ttbar}} = 0.70,$$

$$\epsilon_{\text{W+jets}} = 0.30$$

• We select on P_{bkg} <10^{-11,} according to a previous analysis done with this method to measure the top mass

• Comparison of (16 Signal + 55 Background) MC and data sample. Background probability comparison between data (dots) and MC (histogram)

Example using Monte Carlo Events

- Likelihood is calculated in the physical region, 0 to 1
- Since we are dealing with low statistics, we choose to extract the most probable value and its error defined as the $\frac{1}{2}$ 68.27% region around it

100 events per experiment

20 events per experiment

Linearity of Response for F_0

- Using different input values of F₀, experiments are used to determine output values of F₀
- A response correction needs to be applied to the data

- Output F₀ is biased towards smaller values as more background is introduced
- There is no bias when using parton level *ttbar* and *W*+jets Monte Carlo events
 - Effect may come from radiation

Ensemble Tests (12 Signal +10 Background)

- 200 experiments of 12 ttbar (F₀=0.7) + 10 W+jets events
- Input F_0 is within 68.27% interval of the likelihood in 67% of the experiments reasonable definition for the uncertainty on F_0
- Distributions show most probable F_0 , uncertainty in F_0 , and number of signal events
- Arrows show Run I data

Two-dimensional Probability - M_{top} , F_0

- Assuming F_0 = 0.7 (SM), M_{top} is measured to be 180.1 \pm 3.6 GeV (shift of 0.5 GeV applied)
- Assuming M_{top} =175 GeV, F_0 is measured to be 0.599 \pm 0.302 (linearity response applied)

Preliminary Measurement of F_0 with $D\emptyset$ Run I Data

- Uncertainty on the top mass translates into a systematic error on the measurement of F₀
- Integrate over M_{top} $L(F_0) = \int L(M_{top}, F_0) dM_t$
- Most probable value and 68.27% interval using M_{top} =175 GeV
- 22 events pass our cuts => from fit, 12 signal + 10 background events

$F_0 \pm \delta F_0$ (Stat+	M_{top}) =	$\textbf{0.558} \pm$	0.306
-----------------------------	---------------	----------------------	-------

Statistics + M _{top} uncertainty	0.306
Jet Energy Scale	0.014
Parton Distribution Function	0.007
Acceptance-Linearity Correction	0.021

From Monte Carlo

Background	0.010
Signal Model	0.020
Multiple Interactions	0.009
ttbar Spin Correlations	0.008

Conclusions

- ❖ The helicity of the W boson offers a way to learn about the decay coupling of the top quark
- Using LO approximation and parameterized showering, we calculated the event probabilities, and measured:

 F_0 (preliminary)= 0.56 \pm 0.31

First F_0 measurement done at $D\emptyset$ using 22 events (~50% signal)

CDF measurement using 108 leptons (~70% signal) 0.91 ± 0.39

- This method was first applied to the re-measurement of the top quark mass, and now applied to measure angular distributions
- ❖ We have a method that allows us to extract F₀ using the maximal information in the event:
 - ✓ Correct permutation is always considered (along with the other eleven)
 - ✓ All features of individual events are included, thereby well measured events contribute more information than poorly measured events
 - ✓ This method offers the possibility of increasing the statistics using both W decay branches
 - ✓ For higher statistics, one clearly needs to improve the calculation of the probabilities, but this method is a better way to do the analysis